

Gaussian Mixture Model Phonetics

Motivation: Phonetic Distributions

- Formants: resonant frequencies (Hz)
- Vocal tract shape
- e.g. F1, F2

vowel
- 1
- 2
- 3
- 4
- 5
- 7
- 8
- 9
- 10
- Acoustic cue to vowel category

Formants

Frequency \longrightarrow

Focusing on F2, I, ε

Inspired by
Pierrehumbert

Task 1: Categorization

F2: 2200 Hz

Did I hear "pin" or

 "pen"?
[I]

[]

Approximating with Gaussians

Gaussian distributions

Parameters:
Mean (mu or μ)
$\sum_{i}^{N} p\left(X_{i}\right) X_{i}$

Gaussian distributions

Parameters:
Mean (μ)

Variance ($\boldsymbol{\sigma}^{2}$): average spread from mean
$\sum_{i}^{N} p\left(X_{i}\right)\left(X_{i}-\mu\right)^{2}$

Relative Likelihood

$\mathrm{N}\left(\mathrm{x} \mid \mu, \sigma^{2}\right)=$
$\exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)$
$\sqrt{2 \pi \sigma^{2}}$

Mixture of Gaussians Parameters

GMM Categorization

Did I hear "pin" or "pen"? $x=2300 \mathrm{~Hz}$

We want:

$$
\begin{aligned}
& P([I] \mid x=2300) \\
& P([\varepsilon] \mid x=2300)
\end{aligned}
$$

Bayes again!

$$
P(A \mid B)=P(B \mid A) P(A) / P(B)
$$

$$
P([I] \mid x)=P(x \mid[I]) P([I]) / P(x)
$$

$P([\varepsilon] \mid x)=P(x \mid[\varepsilon]) P([\varepsilon]) / P(x)$

Bayes again!

$\mathrm{P}([\mathrm{I}] \mid \mathrm{x})=$
 $P(x \mid[\mathrm{I}]) P([\mathrm{I}]) / P(x)=$

$\mathrm{N}\left(\mathrm{x} \mid \mu_{\mathrm{I}^{\prime}} \boldsymbol{\sigma}_{\mathrm{I}}^{2}\right) * \mathrm{P}([\mathrm{I}]) / \mathrm{P}(\mathrm{x})=$
$0.0012 / P(x)$

$$
\begin{aligned}
& \mu_{\mathrm{I}}=2400 \\
& \sigma_{\mathrm{I}}^{2}=100 \\
& \mathrm{P}([\mathrm{I}])=0.5 \\
& x=2300
\end{aligned}
$$

Bayes again!

$P([\varepsilon] \mid x)=$ $P(x \mid[\varepsilon]) P([\varepsilon]) / P(x)=$

$\mathrm{N}\left(\mathrm{x} \mid \mu_{\varepsilon}, \boldsymbol{\sigma}_{\varepsilon}^{2}{ }_{\varepsilon}\right) * \mathrm{P}([\varepsilon]) / \mathrm{P}(\mathrm{x})=$ $0.00060 / \mathrm{P}(\mathrm{x})$

$$
\begin{aligned}
& \mu_{\varepsilon}=2100 \\
& \sigma_{\varepsilon}^{2}=180 \\
& \mathrm{P}(\varepsilon \varepsilon])=0.5 \\
& \mathrm{x}=2300
\end{aligned}
$$

Bayes again!

$$
\begin{aligned}
& P([\varepsilon] \mid x)=0.00060 / P(x) \\
& P([I] \mid x)=0.0012 / P(x)
\end{aligned}
$$

$P([\varepsilon] \mid x)=0.00060 / 0.00060+0.0012=.33$ $\mathrm{P}([\mathrm{I}] \mid \mathrm{x})=0.0012 / 0.00060+0.0012=.67$
$P([I \mid x)>P([\varepsilon] \mid x)$

Estimating GMM parameters: labeled data

Estimating parameters: Labeled Data

[I]: 2600 Hz
[I]: 2500 Hz
[I]: 2300 Hz [I]: 2100 Hz
[ε : 2200 Hz
[$\varepsilon]: 1600 \mathrm{~Hz}$

$$
\begin{aligned}
& \mu_{\mathrm{I}}=? \\
& \boldsymbol{\sigma}_{\mathrm{I}}^{2}=? \\
& \mu_{\varepsilon}=? \\
& \sigma_{\varepsilon}^{2}=? \\
& \mathrm{P}(\varepsilon)=? \\
& \mathrm{P}(\mathrm{I})=?
\end{aligned}
$$

Estimating GMM: Labeled Data

[I]: 2600 Hz
[I]: 2500 Hz
[I]: 2300 Hz [I]: 2100 Hz
[ε : 2200 Hz
[$\varepsilon]: 1600 \mathrm{~Hz}$

$$
\begin{aligned}
& \mu_{\mathrm{I}}=2375 \\
& \sigma_{\mathrm{I}}^{2}=? \\
& \mu_{\varepsilon}=? \\
& \sigma_{\varepsilon}^{2}=? \\
& \mathrm{P}(\varepsilon)=? \\
& \mathrm{P}(\mathrm{I})=?
\end{aligned}
$$

Estimating GMM: Labeled Data

[I]: 2600 Hz
[I]: 2500 Hz
[I]: 2300 Hz [I]: 2100 Hz
[ε : 2200 Hz
[$\varepsilon]: 1600 \mathrm{~Hz}$

$$
\begin{aligned}
& \mu_{\mathrm{I}}=2375 \\
& \sigma_{\mathrm{I}}^{2}=221 \\
& \mu_{\varepsilon}=? \\
& \sigma_{\varepsilon}^{2}=? \\
& \mathrm{P}(\varepsilon)=? \\
& \mathrm{P}(\mathrm{I})=?
\end{aligned}
$$

Estimating GMM: Labeled Data

[I]: 2600 Hz
[I]: 2500 Hz
[I]: 2300 Hz [I]: 2100 Hz
[ε : 2200 Hz
[$\varepsilon]: 1600 \mathrm{~Hz}$

$$
\begin{aligned}
& \mu_{\mathrm{r}}=2375 \\
& \sigma_{\mathrm{I}}^{2}=221 \\
& \mu_{\varepsilon}=1900 \\
& \sigma_{\varepsilon}^{2}=? \\
& \mathrm{P}(\varepsilon)=? \\
& \mathrm{P}(\mathrm{I})=?
\end{aligned}
$$

Estimating GMM: Labeled Data

[I]: 2600 Hz
[I]: 2500 Hz
[I]: 2300 Hz [I]: 2100 Hz
[ε : 2200 Hz
[$\varepsilon]: 1600 \mathrm{~Hz}$

$$
\begin{aligned}
& \mu_{\mathrm{r}}=2375 \\
& \sigma_{\mathrm{I}}^{2}=221 \\
& \mu_{\varepsilon}=1900 \\
& \sigma_{\varepsilon}^{2}=424 \\
& \mathrm{P}(\varepsilon)=? \\
& \mathrm{P}(\mathrm{I})=?
\end{aligned}
$$

Estimating GMM: Labeled Data

[I]: 2600 Hz
[I]: 2500 Hz
[I]: 2300 Hz [I]: 2100 Hz
[ε : 2200 Hz
[$\varepsilon]: 1600 \mathrm{~Hz}$

$$
\begin{aligned}
& \mu_{\mathrm{r}}=2335 \\
& \sigma_{\mathrm{r}}^{2}=221 \\
& \mu_{\varepsilon}=1900 \\
& \sigma_{\varepsilon}^{2}=424 \\
& \mathrm{P}(\varepsilon)=2 / 6 \\
& \mathrm{P}(\mathrm{I})=?
\end{aligned}
$$

Estimating GMM: Labeled Data

[I]: 2600 Hz
[I]: 2500 Hz
[I]: 2300 Hz [I]: 2100 Hz
[ε : 2200 Hz
[$\varepsilon]: 1600 \mathrm{~Hz}$

$$
\begin{aligned}
& \mu_{\mathrm{r}}=2335 \\
& \sigma_{\mathrm{I}}^{2}=221 \\
& \mu_{\varepsilon}=1900 \\
& \sigma_{\varepsilon}^{2}=424 \\
& \mathrm{P}(\varepsilon)=2 / 6 \\
& \mathrm{P}(\mathrm{I})=4 / 6
\end{aligned}
$$

Task \#2: Unsupervised Learning

What are the categories? What are their parameters (μ, $\sigma, \pi)$?

Unsupervised learning: cognition

How do infants learn phoneme categories with so much overlap? [Feldman 2009, Vallabha 2007]

Without knowing anything about the categories beforehand, input data looks like this:

GMM Expectation-Maximization

Intuition:

- If we knew the vowel labels, we could estimate mu and sigma for each category
- But we don't know the vowel labels :(
- If we knew mu and sigma for each category, we could estimate the vowel labels
- But we don't know the mus and sigmas:(

GMM Expectation-Maximization

Initialization: Start with k categories with random means and variances [cf. k-means!]

GMM Expectation-Maximization

Expectation: How likely is each category for each label?

GMM Expectation

Expectation: How likely is each category for each label?
For each observation \mathbf{x}, for each category $\mathrm{c}\left(\mu_{\mathrm{c}^{\prime}} \boldsymbol{\sigma}^{2}{ }_{\mathrm{c}}\right)$, compute:
$\mathbf{P}(\mathbf{c} \mid \mathbf{x})=\mathrm{N}\left(\mathrm{x} \mid \mu_{\mathrm{c}^{\prime}} \boldsymbol{\sigma}^{2}\right) * \mathrm{P}(\mathrm{c}) / \mathrm{P}(\mathrm{x})$

GMM Expectation

Expectation: How likely is each category for each label? For each observation \mathbf{x}, for each category $\mathrm{c}\left(\mu_{\mathrm{c}^{\prime}} \boldsymbol{\sigma}^{2}{ }_{\mathrm{c}}\right)$, compute:
$\mathbf{P}(\mathbf{c} \mid \mathbf{x})=\mathrm{N}\left(\mathrm{x} \mid \mu_{\mathrm{c}^{\prime}} \boldsymbol{\sigma}^{2}\right) * \mathrm{P}(\mathrm{c}) / \mathrm{P}(\mathrm{x})$
cf. k-means: *soft* categorization

GMM Maximization

Maximization: Update each category's parameters based on the observations

Each observation's contribution to the parameters is weighed by \mathbf{P} (category | observation)

GMM Maximization

Maximization: Update each category's parameters based on the observations

New $\mu_{c}=\frac{x_{1} P\left(c \mid x_{1}\right)+x_{2} P\left(c \mid x_{2}\right)+\ldots+x_{n} P\left(c \mid x_{n}\right)}{P\left(c \mid x_{1}\right)+P\left(c \mid x_{2}\right)+\ldots+P\left(c \mid x_{n}\right)}$

GMM Maximization

- Think of each category as taking part of the responsibility for each observation
- That responsibility could be really big or small

GMM Maximization

Just like a weighted/soft version of computing category mean
GMM new mean
K-Means new mean
$x_{1} P\left(c \mid x_{1}\right)+x_{2} P\left(c \mid x_{2}\right)+\ldots+x_{n} P\left(c \mid x_{n}\right) \quad 0 * x_{1}+1 * x_{2}+\ldots+1 * x_{n}$
$P\left(c \mid x_{1}\right)+P\left(c \mid x_{2}\right)+\ldots+P\left(c \mid x_{n}\right)$
$0+1+\ldots+1$

GMM Maximization

More expectation: do the same weighted estimates for the rest of the parameters

New $\sigma_{c}^{2}: P\left(c \mid x_{1}\right)\left(x_{1}-\mu_{c}\right)^{2}+P\left(c \mid x_{2}\right)\left(x_{2}-\mu_{c}\right)^{2}+\ldots+P\left(c \mid x_{n}\right)\left(x_{n}-\right.$

$$
\left.\mu_{c}\right)^{2} \quad P\left(c \mid x_{1}\right)+P\left(c \mid x_{2}\right)+\ldots+P\left(c \mid x_{n}\right)
$$

New $P(c):$

$$
P\left(c \mid x_{1}\right)+P\left(c \mid x_{2}\right)+\ldots+P\left(c \mid x_{n}\right)
$$

GMM Expectation-Maximization

After 1 iteration

Differences from k-means

- Soft instead of hard categorization while learning
- More parameters: prior probability of category, variance
- Guaranteed to increase likelihood of data given model at every step
- Could converge on local instead of global maximum

Multiple dimensions

Beyond just F2: can characterize vowels with F1 and F2 for 2-D Gaussian

+ more! (e.g. length)

Multiple dimensions

- Category means for each dimension
$\mu=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- Instead of just $\boldsymbol{\sigma}^{2}$, covariance matrix

$$
\left[\begin{array}{cc}
1 & 3 / 5 \\
3 / 5 & 2
\end{array}\right]
$$

Beyond vowels: Stop voicing

Voice Onset Time (VOT): pIn vs bIn

Stop voicing

Fundamental frequency (fO) also correlates with stop voicing! fO is:

- rate at which vocal folds are vibrating
- associated with pitch
- Tend to have lower f0 right next to voiced stops
- Tend to have higher fO right next to voiceless stops

Measuring f0

f0 and VOT in Korean stops

- Kirby (2013)
- Categories changing over time (ongoing!)
- Categories distinguished more and more by fO than VOT
- Case of tonogenesis
1960

2000s

Sound Change with GMM

- "Agents"
- Have a memory of categorized observations $\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}}$
- Each observation has an fO and VOT value
- Has a mixture of Gaussians model estimated from memory observations
- Adds each perceived observation to memory
- Memory observations decay over time

Sound Change with GMM

"Agents"

- Produce: sample from Gaussian mixture model
- Sample a category from $P(c)$
- Sample f0 and VOT values from 这 Gaussian distributions for that category:
- $\mathrm{N}_{\mathrm{VOT}}\left(\mathrm{x} \mid \mu_{\mathrm{VOT}}, \Sigma\right.$)

Sound Change with GMM

"Agents"

Perceive: receive observation with f0, VOT value

- Categorize observation:
- maximize $P(c \mid x)$
- $=P(c) P\left(x \mid \mu_{c}, \Sigma\right)$
- Ideal observer?

$$
P(c \mid x)=0.6 \ldots
$$

- Add to memory

Sound Change with GMM

What makes distributions move?

Biases in production:

- Alter produced values
- λ : constant values added to one or more dimensions (fO, VOT)
- β : chance of "enhancing" category distinction
- Move means further apart and reduce variance before sampling

Korean Simulations

- Initialize agent memories to 1960 distribution
- Run perception+production for many iterations
- Manipulate λ and β to eventually produce the 2000s distribution: what kind of bias and enhancement is necessary?

Evaluation

- How to compare simulation distribution to 2000s distribution?
KL divergence: how much 'dirt' to move from one to the other

Korean Simulations Findings

- Both enhancement and bias influences necessary to produce most 2000s-like distribution
- Other cues involved (spectral tilt, vowel length) - fO takes over without any bias specifically preferring it

