Phonology Practice

Cerys Hughes
Ling 201 Discussion Section 3/9/2024

Plan for today

1. Work through an allophone problem together
2. Go over Question 2 on Assignment 3
3. More allophone problems

Language 1: t vs d

[uvdi] [uӨt]
[intos]
[pit]
[tinb]
[\because uðd]
[tJuzd]
[ekt]
[aft]

Step 1: List the environments

What do we mean by environment?: The neighboring phone (or silence) that comes immediately before, and the one that comes immediately after

For example:

- in the word [uvdi], d is in the environment "v comes before, i comes after"
- in the word [uzd], d is in the environment " z comes before, nothing comes after".
- We write "nothing" with \# for shorthand, i.e. "z comes before, \# comes after"

Step 1: List the environments

$[t]$		[d]	
Before	After	Before	After
θ	$\#$	v	i
n	o	o	\#
i	$\#$	z	\#
\#	i		
k	$\#$		
f	$\#$		

Step 2: Check for complementary distribution

"Complementary distribution" is just a fancy way of describing the case where:
-there's some type of environment where [t$]$ always occurs
-[d] never occurs in that environment
OR vice-versa:
-there's some type of environment where [d] always occurs
$-[t]$ never occurs in that environment

Step 2: Check for complementary distribution

"Complementary distribution" is just a fancy way of describing the case where:
-there's some type of environment where [t$]$ always occurs
-[d] never occurs in that environment
OR vice-versa:
-there's some type of environment where [d] always occurs
-[t] never occurs in that environment
Why do we care about this? Well, if [t] and [d] are in complementary distribution, it means that for this language, where you get [t]s depends on where you get [d]s (and vice versa!)

Step 2: Check for complementary distribution

Is there anything that [t]'s environments have in common, that never is true for [d]'s environments? Or vice versa?

$[t]$		[d]	
Before	After	Before	After
O	$\#$	v	i
n	o	ð	\#
i	$\#$	z	\#
\#	i		
k	$\#$		
f	$\#$		

Step 2: Check for complementary distribution

$[\mathbf{t}]$		[d]	
Before	After	Before	After
θ	$\#$	v	i
n	o	d	\#
i	$\#$	z	\#
\#	i		
k	$\#$		
f	$\#$		

Step 2: Check for complementary distribution

Notice that all of the sounds before [d] are fricatives, and they're all voiced.

$[\mathbf{t}]$		[d]	
Before	After	Before	After
O	$\#$	v	i
n	o	o	\#
i	$\#$	z	\#
\#	i		
k	$\#$		
f	$\#$		

Step 2: Check for complementary distribution

There's always a voiced fricative before [d]!
There's never a voiced fricative before [t$]$!

[t]		[d]	
Before	After	Before	After
$\boldsymbol{\theta}$	$\#$	v	i
n	0	o	\#
i	$\#$	z	\#
\#	i		
k	$\#$		
f	$\#$		

Step 2: Check for complementary distribution

So, we can conclude that [t] and [d] are in complementary distribution: [d] always occurs after a voiced fricative, and [d] never does

Step 3: Describe the rule

WHY does [d] always show up after a voiced fricative, and [t] never does???

Because [d] is an allophone of the phoneme /t/!

Step 3: Describe the rule

WHY does [d] always show up after a voiced fricative, and [t] never does???

Because [d] is an allophone of the phoneme /t/!
How do we know [t] isn't an
allophone of [d]? Good question! We'll get to that in a little bit

Step 3: Describe the rule

Because we never see [t] after a voiced fricative, and we see [d] there, a first pass at describing the rule is:
/t/ changes into [d] after a voiced fricative.

Step 4: Describe the rule in features

But our rules don't work on whole phones; they work on properties of those phones called features.

Make sure to get the feature chart handout from Canvas!

| Consonants | p | b | t | d | k | g | f | v | s | z | θ | $ð$ | \int | 3 | f | j |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| consonant | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| vowel | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| sonorant | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| voice | - | + | - | + | - | + | - | + | - | + | - | + | - | + | - | + |
| labial | + | + | - | - | - | - | + | + | - | - | - | - | - | - | - | - |
| coronal | - | - | + | + | - | - | - | - | + | + | + | + | + | + | + | + |
| anterior | + | + | + | + | - | - | + | + | + | + | + | + | - | - | - | - |
| strident | - | - | - | - | - | - | - | - | + | + | - | - | + | + | + | + |
| nasal | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| continuant | - | - | - | - | - | - | + | + | + | + | + | + | + | + | - | - |
| back | - | - | - | - | + | + | - | - | - | - | - | - | - | - | - | - |
| lateral | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |

Step 4: Describe the rule in features

So all we need to do now is translate this rule into features:
/t/ changes into [d] after a voiced fricative.

Step 4: Describe the rule in features

/t/ changes into [d] after a voiced fricative.

First, let's find the feature values that describe /t/ and nothing else.

Step 4: Describe the rule in features

First, let's find the feature values that describe /t/ and nothing else.
/t/ is [-voice], so let's start there.
However, a ton of other sounds are [-voice] too, but they aren't involved in our rule. So let's see what other feature values will help eliminate those:

Step 4: Describe the rule in features

- /t/ is [-voice] and also [+coronal], unlike many other [-voice] phonemes.
- However, [-voice, +coronal] still describes /s/,/ $\theta /, / \mathrm{t} \mathrm{f} /$ as well as /t/.
- What other features of [t$]$ can we use that are different from $/ \mathrm{s} /, / \theta /, / \mathrm{t} \mathrm{J} /$?

Step 4: Describe the rule in features

What other features of $[t]$ can we use that are different from $/ \mathrm{s} /, / \theta /, / \mathrm{t} /$ /?
$/ \mathrm{s} /$ and $/ \theta /$ are both [+continuant], but /t/ is [-continuant].

Step 4: Describe the rule in features

So we can describe /t/ as [-voice, +coronal, -continuant] to eliminate $/ \mathrm{s} /$ and $/ \theta /$.
[-voice, +coronal, -continuant] still describes /t $\mathrm{f} /$, though, and we don't want to include it in our rule, so we need to find a feature different for /t/ and /t $\mathrm{f} /$.

Step 4: Describe the rule in features

$/ \mathrm{t} /$ / is [-anterior], but /t/ is [+anterior]. So we can describe /t/ and not $/ \mathrm{t} /$ / with the feature description:
[-voice, +coronal, -continuant, +anterior].

Step 4: Describe the rule in features

Reminder: our rule is /t/ changes into [d] after a voiced fricative. We've just described /t/ in terms of features. Now let's describe the "voiced fricative" environment.

Step 4: Describe the rule in features

Goal: what combo of feature values do $v, ð, z$ have in common that are different from other phones in the chart?

They're all [+voice], so let's start there.

Step 4: Describe the rule in features

Goal: what combo of feature values do $v, ð, z$ have in common that are different from other phones in the chart?

They're all [+voice], so let's start there.

There are a ton of other [+voice] sounds though, like [n] and [b], that we don't want to include in our rule. We need to find the feature values that are different between v, ∂, z and other [+voice] sounds to eliminate those.

Step 4: Describe the rule in features

What features are different for $\mathrm{v}, \circlearrowright, \mathrm{z}$ and other voiced sounds?
$\mathrm{v}, \mathrm{\chi}, \mathrm{z}$ are all [+continuant], and a lot of other voiced sounds aren't, so let's include that.

So far we have [+voice, +continuant].

Step 4: Describe the rule in features

What features are different for $\mathrm{v}, \circlearrowright, \mathrm{z}$ and other voiced sounds?
$\mathrm{v}, ð, \mathrm{z}$ are all [+continuant], and a lot of other voiced sounds aren't, so let's include that.

So far we have [+voice, +continuant].
What other sounds does this still include? 3, r, l, j

Step 4: Describe the rule in features

What features are different for $\mathrm{v}, ð, \mathrm{z}$ and other voiced sounds?
$\mathrm{v}, \varnothing, \mathrm{z}$ are all [+continuant], and a lot of other voiced sounds aren't, so let's include that.
So far we have, to describe $\mathrm{v}, \mathrm{\partial}, \mathrm{z}$, [+voice, +continuant].
What other sounds does this still include? 3, r, l, j
These sounds aren't in the language we're looking at [look back at our word data to check this], so we don't have to worry about eliminating those.

Step 4: Describe the rule in features

What features are different for $\mathrm{v}, ð, \mathrm{z}$ and other voiced sounds?
$\mathrm{v}, \varnothing, \mathrm{z}$ are all [+continuant], and a lot of other voiced sounds aren't, so let's include that.
So far we have, to describe $\mathrm{v}, \mathrm{\partial}, \mathrm{z}$, [+voice, +continuant].
What other sounds does this still include? 3, r, l, j
These sounds aren't in the language we're looking at [look back at our word data to check this], so we don't have to worry about eliminating those.

So our description for "voiced fricative" here can just be [+voice, +continuant].

Sidetrack

Now let's get back to that question: why is the rule that /t/ changes to [d] and not /d/ changes to [t]? It's because of the distributions!

Sidetrack

If the rule is $/ \mathrm{d} /->[\mathrm{t}]$ after $\theta, \mathrm{n}, \mathrm{i}, \#, \mathrm{k}, \mathrm{f}$, then there's:

- no set of feature values that describes only the phones in the environment ($\theta, \mathrm{n}, \mathrm{i}, \#, \mathrm{k}, \mathrm{f}$) and nothing else. (check this on your chart!)
- We have no way to express this in our feature system!
- And on a deeper level, there's nothing about the properties of the phones that predicts whether they'll make the change happen

Sidetrack

If the rule is /d/ -> [t] after i, o, \# then there's:

- no set of feature values that describes only the phones in the environment (i, o, \#) and nothing else.
- We have no way to express this in our feature system!
- What about "before a vowel or silence"?
- That won't work; our feature system doesn't do "or"'s, since then we could put together any random set of stuff that has nothing to do with properties they share

Step 4: Describe the rule in features

Reminder: our rule is /t/ changes into [d] after a voiced fricative.
So far we have /t/ in features: [-voice, +coronal, -continuant, +anterior]
And we have "voiced fricatives" in features: [+voice, +continuant]
All that's left is to specify the change from / t / to [d].

Step 4: Describe the rule in features

Reminder: our rule is /t/ changes into [d] after a voiced fricative.
So far we have /t/ in features: [-voice, +coronal, -continuant, +anterior]
And we have "voiced fricatives" in features: [+voice, +continuant]
All that's left is to specify the change from /t/ to [d].
t and d are exactly the same, except that [d] is voiced.

Step 4: Describe the rule in features

Reminder: our rule is /t/ changes into [d] after a voiced fricative.
So far we have /t/ in features: [-voice, +coronal, -continuant, +anterior]
And we have "voiced fricatives" in features: [+voice, +continuant]
All that's left is to specify the change from / t / to [d].
t and d are exactly the same, except that [d] is voiced. So we can write our rule as:

Step 6: Describe the rule in features

Reminder: our rule is /t/ changes into [d] after a voiced fricative.
So far we have /t/ in features: [-voice, +coronal, -continuant, +anterior]
And we have "voiced fricatives" in features: [+voice, +continuant]
All that's left is to specify the change from /t/ to [d].
t and d are exactly the same, except that [d] is voiced. So we can write our rule as:
/-voice, +coronal, -continuant, +anterior/ \rightarrow [+voice] / [+voice, +continuant]

And we're done!

Our analysis of this dataset is that there's this rule:
/-voice, +coronal, -continuant, +anterior/ \rightarrow [+voice] / [+voice, +continuant]

Assignment 3 Question 2

More language dataset practice

Language 2: m vs n

[bamp]
[noli]
[enk]
[andin]
[imfan]
[pambu]
[imva]

Language 3: s vs z

[iza]	
[zang]	
$[\theta \mathrm{in}]$	[ekza]
$[$ lits]	
$[$ ak $\theta]$	[mis]
$[$ aði]	
$[$ aði]	

